

Abstracts

Thermographic Tumor Detection Enhancement Using Microwave Heating

J.E. Thompson, T.L. Simpson and J.B. Caulfield. "Thermographic Tumor Detection Enhancement Using Microwave Heating." 1978 Transactions on Microwave Theory and Techniques 26.8 (Aug. 1978 [T-MTT] (Special Issue on Microwaves in Medicine, with Accent on the Application of Electromagnetics to Cancer Treatment)): 573-580.

Infrared thermography offers a viable alternative to X-ray mammography for early breast cancer detection if the inherent low sensitivity of the technique can be improved. This paper presents results which indicate that the sensitivity of thermography is increased by irradiating the examined area with microwaves. This arises because of selective absorption characteristics of the particular tumor tissue investigated; specifically, it has been observed that *in situ* irradiation of transplantable guinea pig hepatoma, using 2450-GHz microwave radiation, results in a tumor temperature rise of 5.5°C and a rise of 2.5°C in the surrounding healthy tissue. This spatial gradient of 3°C compares with the relevant unheated spatial gradient of approximately 0.5°C. The microwave-induced increased temperature differential between tumor and healthy tissue is easily observed using a thermovision camera. Data regarding the temporal evolution of spatial temperature distributions associated with tumor tissue before, during, and after microwave irradiation are presented. Additional data are included regarding the heating and cooling rates of microwave-irradiated tumors. The data show conclusively that the specific tumor investigated selectively absorbs microwave energy *in situ* and exhibits this selective absorption as a thermographically observable increase in local skin surface temperature. The data further show that tumor heating and cooling rates are faster than for healthy tissue.

[Return to main document.](#)

Click on title for a complete paper.